Cybersecurity in Industrial Control Systems

Challenges and Solutions in Industry 4.0

Giacomo Calabria – 17th June 2025

AGENDA

Why ICS are vulnerable ?

From Isolation to Exposure: Why ICS are now a target

Vulnerabilities in ICS

9	

ICS were designed for reliability, not cybersecurity Built for closed, isolated environments ("air-gapped") Prioritised deterministic control and uptime

Industry 4.0 breaks this isolation

Integration with cloud, IT networks, IIoT devices Increased interconnectivity introduces new threat vectors

ICS control critical infrastructure

Energy, manufacturing, water, transport — highly sensitive

Modern cyberattacks now target physical operations

With real-world consequences (e.g., blackouts, safety failures)

Modern ICS architecture

Industrial Control Systems protocols

Modern Threat in Industry 4.0

	Industrial IoT = More entry points	Smart sensors, mobile apps, remote access interfaces
٩	Cloud and AI = Data centralisation, new risks	Data in transit, shared computation, and cloud misconfigurations
	Mobile devices in OT networks	Often unmanaged endpoints with weak controls
	Supply chain threats	Vulnerable third-party firmware and embedded components
8	Adversarial Machine Learning	ML models in ICS can be misled or poisoned

ICS Then vs. Now

Legacy ICS (Pre-Industry 4.0)

- Isolated, air-gapped systems
- Designed for reliability and uptime
- Plaintext protocols (Modbus, DNP3, Profibus)
- Static firmware, rarely patched
- No authentication or encryption
- Physical-only access control
- Security by obscurity

Modern ICS (Industry 4.0)

- Integrated with IT, Cloud, and IIoT
- Expected to be smart, connected, and adaptive
- Mixed protocols with partial or no hardening
- Dynamic, software-driven logic and updates
- Growing need for identity, trust, segmentation
- Remote access, mobile management tools
- Requires formal threat modelling and monitoring

Case Study: Industroyer

Industroyer in bullet points

Discovered: June 2017 by ESET and Dragos

Target: Ukrainian power grid (December 2016 outage)

Modular malware with protocol-specific payloads: IEC-101, IE-104, OPC DA, IEC-61850

Protocol-aware: Did not exploit vulnerabilities, but used legitimate functions to control substations

Included components: backdoor, launcher, payload modules, DoS tool

Impact: Power loss in Kyiv, ~1 hour

Limited global spread, but demonstrated proof of concept for grid disruption

High-level architecture of Industroyer

Industroyer's Execution Chain

- Initial access via backdoor
 Delivered through spear-phishing or unsecured access
- 2. Launcher activates payload modules Each module targets a specific industrial protocol
- 3. Payloads send control commands to substations

Legitimate but malicious commands (e.g., open breakers)

- 4. Denial-of-service (DoS) tool wipes traces Clears system logs and disables recovery
- 5. System blackout achieved

Power grid segment is disrupted without physical damage

Lessons Learned and Persistent Risks

Network segmentation

Limit lateral movement between IT and OT zones

Protocol-aware monitoring (ICS-specific IDS) Detect misuse of IEC-104, OPC, etc.

Allowlisting and access control Only authorised commands/devices allowed

Incident response planning Preparedness for targeted ICS attacks

Unidirectional gateways Prevent command injection into critical systems

Why It Still Matters?

- Same vulnerable protocols are still in use
- Modular, protocol-aware malware is replicable
- Threat actors now better funded and coordinated
- Growing convergence (IT/OT, Cloud, IIoT) → more entry points
- Successor malware likely (e.g., Industroyer2, CrashOverride)

Modern ICS Defence Strategies

Rethinking ICS security after Industroyer

Secure-by-Design & Industry 5.0

Secure-by-Design Principles

- Security embedded at hardware, firmware, and software levels
- Follows principles like:
 - Least privilege
 - Defence in depth
 - Fail-secure defaults
- Standards: IEC 62443-4-1, IEC 62443-4-2, NIST SP 800-82

Industry 5.0 Perspective

- Human-machine collaboration & ethical technology use
- Cybersecurity expands to include:
 - Transparency in Al-driven decisions
 - Security in decentralised, edge-based systems
 - Sustainability and societal resilience
- Emphasis on trust, adaptability, and safety

Key Takeaways: Securing the Unsecurable

ICS were never built for today's threats \rightarrow Security must be added without breaking functionality

Industry 4.0 expands the attack surface \rightarrow Cloud, IIoT, AI, mobile = new vectors

Industroyer proved disruption is possible \rightarrow Real-world ICS attacks are no longer theoretical

Layered defence and visibility are essential \rightarrow Segmentation, monitoring, IAM, Zero Trust

Secure-by-Design is the long-term vision \rightarrow Industry 5.0 needs trust, transparency, and resilience

Thank you