
Final Project
ROAD SIGNS AND TRAFFIC LIGHTS

DETECTION IN DRIVING SCENES
Giacomo Calabria

Computer Vision - University of Padua
22 January 2025

CONTENTS

I Introduction 1

II Object detection 1
II-A YOLO classifier 1
II-B Hough transform 2
II-C Separation of ceil 2

III Object classification 2
III-A Speed Limit Signs 2
III-B Traffic lights classification 2

IV Results 3
IV-A YOLO models 3
IV-B Traffic Light Recognizer 4
IV-C Hough Transform 5
IV-D Hough vs YOLO 6

V conclusions 7

References 7

Appendix A: Python code 8
Abstract—We have investigated various computer vision tech-

niques to recognize traffic lights and road signs in driving
scenes. Using the Open-CV library and YOLO-based models, we
have analysed various pictures and we have compared different
approaches.

I. INTRODUCTION

The detection and classification of road signs and traffic
lights play a crucial role in ensuring the safety and efficiency
of autonomous driving systems. This project explores the
application of computer vision techniques to detect and
classify road signs and traffic lights in driving scenes. The
primary objectives are to identify all relevant traffic signs
within an image, determine their categories, and assess
the status of traffic lights. To achieve these goals, we
implemented a two-stage pipeline: detection of objects (road
signs and traffic lights) and subsequent classification. The
project is developed in Python using mainly the OpenCV
library; other libraries are used.

This report outlines the development and evaluation of
the proposed methodologies, highlighting their strengths
and limitations. It also includes a comparative analysis of
performance metrics, enabling a comprehensive understanding
of the trade-offs between accuracy, efficiency, and scalability.

II. OBJECT DETECTION

The process that leads to the recognition of traffic signs and
traffic lights consists of an initial segmentation phase, which
divides the image into its most significant parts, followed by
a classification phase of the segmented region that identifies
the type of the object. These can be performed using various
techniques, including the following:

• Deep Learning detection eg. YOLO
• Classical Machine Learning eg. Bag of Words
• Deterministic strategies eg. Hough transform

A. YOLO classifier

A YOLO (You Only Look Once) framework is a
deep learning model specifically designed for real-time
object detection and classification. We decided to use
two different YOLO-based models: one pre-trained on
the COCO (Common Objects in Context) dataset, and a
custom-trained model tailored for detecting speed limit
signs. The pretrained model, which is capable of detecting
only traffic lights and stop signs, leverages the extensive
COCO dataset to ensure robust detection of these classes.
For this model, we opt for the latest version of YOLO
provided by Ultralytics [2], a company specializing in
AI-driven computer vision solutions. Specifically, we used
the YOLOv11x model, which is their flagship version
featuring the highest number of parameters (56.9 million).
While this model incurs significant computational costs, the
absence of strict real-time requirements in our application
made execution time a secondary concern. For scenarios
demanding real-time performance, lighter models, such as
YOLOv11n or YOLOv11s, can be employed as alternatives.

The custom YOLO model, on the other hand, was trained
using a specialized dataset, referenced in [1], consisting
of 4,969 samples. This dataset enabled the training of a
model capable of recognizing a wide variety of traffic-related
classes, including: Green Light, Red Light, and various speed
limits (10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120),
as well as Stop signs. This comprehensive class structure
ensures that the custom model is well suited for detecting
and classifying speed limit signs across diverse conditions.

In the results section, we will analyse the performance
and accuracy of this custom-trained model, comparing the
outcomes achieved by training with different base models
and varying numbers of epochs. These evaluations aim to

highlight the trade-off between computational efficiency and
detection precision, as well as to validate the suitability of
the custom model for traffic sign recognition tasks.

B. Hough transform

The Hough Transform is a feature extraction technique
widely used for detecting shapes such as lines, circles,
and ellipses within an image. While it boasts significant
advantages, including high accuracy, robustness to noise, and
versatility, it also comes with several limitations that must
be carefully managed during its application. One notable
drawback is its reliance on parameter tuning, which prevents
universal detection. To achieve generalizable parameters,
numerous trial-and-error attempts are often required, making
the process time-consuming and less efficient. Additionally,
the Hough Transform is not scale-invariant; significant
changes in image resolution may necessitate manual
adjustments or preprocessing to redefine the radius range,
which can complicate the process.
Another limitation is its assumption of fixed-radius circles.
If a circle in the image deviates from a perfect shape, the
transform may fail to detect it altogether. Furthermore,
the quality of edge detection and the contrast between the
circle and its background play a critical role in successful
detection. Poor edges or low contrast can severely impact
results, increasing the risk of false negatives or inaccurate
detections.

To improve the reliability of circle detection using the
Hough Transform, preprocessing steps can greatly enhance
its effectiveness. For instance, converting the image to
greyscale and applying histogram equalization can improve
contrast, while Gaussian de-noising filters help reduce
noise that might interfere with edge detection. Moreover,
techniques such as sky segmentation can eliminate irrelevant
areas of the image, reducing false positives and focusing the
detection on regions where circles are more likely to appear.
These optimizations significantly enhance the precision and
reliability of the Hough Transform, making it more suitable
for practical applications.

C. Separation of ceil

Feature extraction techniques analyse the entire image,
often leading to inefficiencies and false positives, particularly
in scenarios with complex or cluttered environments. To
address this, a custom function was developed to optimize
deterministic algorithms by isolating the sky from the ground.

The separate_image_by_brightness function
achieves this by dividing the image vertically based on the
brightness distribution. It calculates the average brightness for
each row and identifies a separation line where the cumulative
brightness reaches 50% of the total brightness. This process
effectively segments the image into two distinct regions: an
upper region, typically brighter and corresponding to the sky,
and a lower region, generally darker and associated with the
ground.

This segmentation technique significantly improves the
efficiency and accuracy of feature extraction by limiting the

analysis to the region of interest, where road signs are most
likely to appear. It minimizes the influence of irrelevant
features in the sky, such as clouds or overexposed areas,
which often cause false positives in detection. Furthermore,
by focusing on the ground region, this method reduces the
impact of environmental factors such as shadows, reflections,
or uneven lighting, which can otherwise complicate the
identification process. By isolating these areas we can
enhances the robustness of deterministic algorithms.

In the code A the process is implemented using the
np.cumsum function, which calculates the cumulative sum
of the average brightness for each row of the image. Then
a sorted search is performed to find the separation line
corresponding to the threshold of 50%.

III. OBJECT CLASSIFICATION

A. Speed Limit Signs

The function get_speed_limit, detailed in the code
snippet A, is designed to extract the speed limit value from
an image of a Region of Interest (ROI) by utilizing Optical
Character Recognition (OCR) capabilities provided by the
easyocr library. This function identifies speed limit numbers
on traffic signs by focusing on numerical data extraction and
applying targeted preprocessing techniques.

To enhance OCR performance, the ROI image is first
converted to greyscale, simplifying the colour information
and emphasizing intensity differences that are critical for
text recognition. A light Gaussian blur, with a kernel size
of 5 × 5 and σx = 1, is then applied to reduce image noise
while preserving the shape of the numbers, improving the
overall readability of the text. This step ensures that artifacts
or minor irregularities in the image do not interfere with the
OCR’s reading.

The OCR process itself is fine-tuned to recognize
only numeric characters by using the parameter
allowlist=’0123456789’. This restriction narrows the
scope of detection, making the OCR operation both faster
and more reliable, as it eliminates unnecessary computations
involving non-numeric characters. Once the OCR returns its
results, the detected text is analysed iteratively to extract
numeric values. Regular expressions are used for this task,
specifically the pattern (\b\d{1,3}\b), which identifies
numbers consisting of 1 to 3 digits. This approach ensures
flexibility in detecting common speed limit values while
avoiding extraneous text that may inadvertently be captured
by the OCR.

B. Traffic lights classification

The module processes the region of interest (ROI) by
dividing it into three equal zones—upper, middle, and
lower—which correspond to the typical positions of the red,
yellow, and green signals. This division dynamically adapts
to the orientation of the traffic light, whether it is vertical or
horizontal. To analyse these zones, the ROI is first converted
to greyscale, reducing the analysis to brightness levels.
This eliminates dependency on colour, which is particularly
advantageous when dealing with traffic lights featuring

coloured plastic covers or exposed to inconsistent lighting
conditions. By focusing solely on pixel intensity, the system
is resilient to variations that often compromise traditional
methods.

The greyscale analysis calculates the average brightness
of each zone and identifies the brightest one. To ensure
accuracy, the module incorporates a variance check across
the three zones. If the brightness variance is below a
certain threshold, indicating uniform brightness, the system
classifies the traffic light state as ”Unknown.” This step
avoids false positives in scenarios where external factors,
such as reflections or ambient lighting, might create uniform
brightness across the entire ROI. Additionally, the module
uses a dynamic threshold derived from the average brightness
of the zones to determine whether the brightest zone is
sufficiently distinct from the others to be classified as the
active signal.

Compared to previous methods that relied on colour
detection using HSV space, this brightness-based approach
offers significant improvements. The older method, while
effective in ideal conditions, was prone to inaccuracies when
the traffic light’s colours were obscured by tinted plastic
or influenced by challenging lighting environments. These
limitations often led to false detections, particularly in traffic
lights with unconventional designs or when the background
introduced colour noise. The new method eliminates
these issues by entirely removing colour dependency,
focusing instead on light intensity as the primary feature
for classification. This shift enables the system to handle
complex scenarios such as American-style traffic lights with
coloured plastics, low-contrast environments, or variable
illumination.

Another key advantage of the module is its ability to detect
and handle the red-yellow combination, a feature common
in countries like the UK. By analysing the brightness levels
of the red and yellow zones simultaneously, the module can
accurately identify this transitional state. Combined with
its orientation-awareness and adaptive threshold, the system
ensures robust performance across a wide range of traffic
light configurations and environmental conditions.

IV. RESULTS

This section is dedicated to comparing the various methods
applied in this study, with a particular focus on the differences
between deterministic approaches and those leveraging deep
learning techniques. The analysis begins with an evaluation
of the performance of the YOLO classifier, examining its
capabilities in detecting and classifying traffic signs under
various conditions. Following this, the traffic light detector
is assessed, highlighting its effectiveness and limitations.
Finally, the Hough Transform is analysed for its ability to
detect road signs, particularly in scenarios involving simple
geometric shapes.

The goal of this comparative analysis is to provide a
comprehensive understanding of the strengths and weaknesses
of each approach. While deterministic methods are often

computationally efficient, they may lack the flexibility and
accuracy required for complex real-world applications. In
contrast, deep learning-based techniques, such as YOLO,
offer superior performance in terms of precision and
adaptability but come with higher computational costs.

Finally, the section concludes by drawing insights into
which method proves to be the most effective for road sign
and traffic light detection. This includes considerations of
performance, computational efficiency, and adaptability to
varying conditions, providing a clear recommendation on the
optimal approach for these tasks.

A. YOLO models

As discussed in Section A, two models were employed for
object recognition: a pre-trained model on the COCO dataset
and a custom model. The custom model was trained using
various base architectures and different numbers of epochs
to evaluate performance across a range of complexities and
training durations. Below is an overview of all the models
generated, progressing from the lightest to the most complex:

• YOLO v8n 50 epochs
• YOLO v8n 100 epochs
• YOLO v8s 50 epochs
• YOLO 11s 50 epochs
• YOLO 11l 50 epochs

Among these, the YOLO 11l model is the most complex and
computationally demanding. This model required the longest
training time due to its significantly larger architecture and
higher parameter count. Training it over 50 epochs provided
the best balance between training duration and model per-
formance for the specific dataset. The results obtained with
the YOLO 11l model are demonstrated in the Confusion
Matrix presented below, which offers a detailed analysis of
the model’s performance.

Fig. 1. Confusion Matrix Normalized

The matrix highlights the precision and recall rates across
the various classes in the dataset, illustrating the model’s
ability to accurately detect and classify objects.

In many cases, the detection achieved by the YOLO

algorithm significantly outperformed traditional algorithms
such as the Hough transform. To illustrate this, let us examine
some examples that highlight the superior performance of
YOLO in various scenarios.

Fig. 2. Custom trained YOLO detection of difficult road sign

Fig. 3. Custom trained YOLO detection of difficult road sign

These images showcase how YOLO effectively identifies
objects with high accuracy, even in complex or challenging
conditions where the Hough Transform tends to struggle.

B. Traffic Light Recognizer

To determine the state of a traffic light, several approaches
were implemented and evaluated. The first approach did not
include any spatial division of the traffic light’s Region of
Interest (ROI). Instead, color masks for the three typical
traffic light colors—red, yellow, and green—were applied
directly to the ROI, and the state was determined based on
the most prominent color. However, this method exhibited
the poorest performance, often producing false positives in
scenarios where the traffic light was not perfectly captured or
had significant noise. Examples of such cases are illustrated
in the figure below.

Fig. 4. Detected status: Yellow
Sorted colours: [(Yellow,11165), (Green,7484), (Red,0)]

Fig. 5. Erroneous detection

These edge cases highlight a critical flaw: the lack of
spatial segmentation within the traffic light’s ROI leads
to inaccurate state recognition. In the provided examples,
background colours or overlapping elements introduce
significant noise, making it difficult for the algorithm to
discern the traffic light’s actual state.

The second method introduces spatial segmentation, dividing
the traffic light’s ROI into three distinct zones corresponding
to the positions of the red, yellow, and green lights. A
colour mask is then applied to each zone independently,
and the state of the traffic light is determined by identifying
the most prominent colour in the respective zone. This
approach significantly reduces false positives caused by
background elements in the image and generally maintains
good performance in recognizing the traffic light’s state.
Despite these improvements, the HSV color space’s inherent
characteristics pose challenges, particularly in detecting green
within images with a marked greenish hue. In some cases,
the overall green tone of the image disrupts the detection
process, as shown in the examples below.

Fig. 6. Erroneous detection due to background tonality

From these figures, it is evident that when the image has a
predominant green hue, the traffic light’s state is misclassified,
and ”unknown” states are not correctly identified. This is a
significant limitation when dealing with datasets where green
tones are prevalent.

The final approach focuses solely on the spatial analysis of
the three zones that make up the traffic light’s ROI. The
entire image is converted to grayscale, and the brightness
levels of each region are analysed. To improve the detection
of the ”unknown” state, a condition based on the standard
deviation (STD) of the brightness across the three zones was
introduced. If the brightness levels in all three zones are
approximately equal, the traffic light is categorized as ”off”
or ”unknown.” This method offers a highly accurate detection
of the traffic light’s state, although a few edge cases still
result in errors. For instance, as shown in the figure below,
when YOLO detects an excessively large ROI, the brightness
variation across the three zones becomes minimal, leading to
incorrect classification.

Fig. 7. Erroneous detection due to large ROI

While this approach achieves a high level of accuracy, its
effectiveness is heavily reliant on the precision of the initial
ROI detection. Any significant inaccuracies in the ROI, such
as excessive size or misaligned regions, can still compromise
the detection process.

C. Hough Transform

As discussed in Section II-B, the Hough Transform is
not ideal for broad applications in detection tasks due to its
limitations. One of the primary drawbacks is its sensitivity
to image scaling, making it ineffective when objects appear
at varying sizes in the image. Additionally, the transform
struggles to detect circles when edges are irregular or poorly
defined. Fine-tuning the parameters of the Hough Transform
is a time-consuming process, and achieving consistent
results across a large dataset of images can be particularly
challenging.

To mitigate the risk of false positives, we implemented
a validation step where Optical Character Recognition
(OCR) serves as a necessary condition. If the text detected
within a circle does not meet the expected criteria, the
circle identified by the Hough Transform is discarded. This
approach significantly reduces errors, particularly in complex
scenarios.

Fig. 8. False detection of the Hough Transform

The sky segmentation technique described in Section II-C
also helps to minimize false positives by effectively isolating
the region of interest (ROI) containing road signs. This
preprocessing step ensures that irrelevant areas, such as the
sky, are excluded from the analysis, leading to more accurate
detections. Some examples of successful detections using this
method are shown in the figure below.

Fig. 9. False detection of the Hough Transform

Fig. 10. False detection of the Hough Transform

In these cases, it is evident that the sky separation line
aligns well with the image content, preserving critical parts
of the scene while eliminating unnecessary elements. This
improves the overall accuracy of the Hough Transform in
detecting road signs. However, there are instances where the
detection fails to yield satisfactory results, as shown in the
following figure.

Fig. 11. Erroneous detection from the OCR module, and no detection from
the Hough transform on the right side

Fig. 12. No detection of the Hough Transform

Fig. 13. No detection of the Hough Transform

In the images above, successful detection was only achieved
using the YOLO deep learning model, which was specifi-
cally trained for road sign recognition. This highlights the
limitations of the Hough Transform in handling complex or
inconsistent image conditions, emphasizing the advantages of
using more advanced techniques like YOLO for such tasks.

D. Hough vs YOLO

The YOLO detector demonstrates superior performance
compared to the Hough Transform, particularly in challenging
scenarios such as those depicted in Figures 8, 9, and 10. Even
under these complex conditions, YOLO consistently detects
road signs accurately and correctly identifies the speed limit
values. This level of precision highlights YOLO’s robustness
and effectiveness in real-world applications, where factors
such as partial occlusions, varying lighting conditions, and
complex backgrounds can complicate detection tasks.

However, analysing images with the YOLO detector
involves significant computational cost. The model’s deep
learning architecture requires substantial processing power,
which may pose challenges for deployment in environments
with limited resources or strict real-time constraints. Despite
this, YOLO’s greater flexibility in handling image scaling
makes it a more adaptable solution. Unlike the Hough
Transform, which struggles with scale invariance, YOLO
can reliably detect objects across various image resolutions
without the need for extensive parameter adjustments or
preprocessing.

Given its higher accuracy and adaptability, YOLO is
the preferred choice for road sign detection. Its ability
to handle diverse image conditions and deliver consistent
results outweighs computational demands, particularly in
applications where detection precision and reliability are
critical. This makes YOLO an ideal candidate for tasks
such as autonomous driving, advanced driver assistance
systems (ADAS), and traffic monitoring, where accuracy and
robustness are paramount.

V. CONCLUSIONS

This project demonstrated the effectiveness of combining
traditional methods like the Hough Transform with advanced
deep learning models such as YOLO for detecting and
classifying road signs and traffic lights. While deterministic
approaches offered computational efficiency, their limitations
in handling complex scenarios highlighted the superiority of
deep learning techniques in terms of accuracy and adapt-
ability. The integration of preprocessing steps, such as sky-
ground segmentation and brightness-based ROI analysis, fur-
ther improved detection reliability. These results underscore
the critical role of advanced computer vision techniques in
enabling robust autonomous driving systems. Future work
could focus on optimizing computational performance and
extending detection capabilities to handle more complex and
dynamic environments.

REFERENCES

[1] Parisa Karimi Darabi (2024). Traffic Signs Detection dataset for
self-driving cars Kaggle. https://www.kaggle.com/datasets/pkdarabi/
cardetection

[2] Ultralytics YOLO11. 2025 Ultralytics Inc. https://docs.ultralytics.com/
models/yolo11

[3] easyocr API documentation Jaided AI https://www.jaided.ai/easyocr/
documentation/

[4] OpenCV documentation 2025 OpenCV team https://docs.opencv.org/4.
x/index.html

[5] P. Zanuttigh, 2024 Computer Vision course - Lecturer’s slides. Univer-
sity of Padua

https://www.kaggle.com/datasets/pkdarabi/cardetection
https://www.kaggle.com/datasets/pkdarabi/cardetection
https://docs.ultralytics.com/models/yolo11
https://docs.ultralytics.com/models/yolo11
https://www.jaided.ai/easyocr/documentation/
https://www.jaided.ai/easyocr/documentation/
https://docs.opencv.org/4.x/index.html
https://docs.opencv.org/4.x/index.html

APPENDIX A
PYTHON CODE

The analysis of the traffic light is performed in the next
code frame, as described in III-B

def traffic_light_pos_color(ROI):

convert the ROI to HSV color space

ROI = cv.cvtColor(ROI, cv.COLOR_BGR2HSV)

split the image into three regions

height, width = ROI.shape[:2]

split the image based on the orientation.

Check if the image is vertical or horizontal

isVertical = height > width

if isVertical: # top - middle - bottom

r_region = ROI[0:int(height/3), :]

y_region = ROI[int(height/3):int(2*height/3), :]

g_region = ROI[int(2*height/3):, :]

else: # left - middle - right

r_region = ROI[:, 0:int(width/3)]

y_region = ROI[:, int(width/3):int(2*width/3)]

g_region = ROI[:, int(2*width/3):]

create masks for red, yellow, and green colours

mask_r = cv.inRange(r_region, lower_r, upper_r)

[...]

count the number of non-zero pixels in each mask

r_count = cv.countNonZero(mask_r)

[...]

color_counts = {

"Red": r_count,

"Yellow": y_count,

"Green": g_count

}

sorted_colors = sorted(color_counts.items(),

key=lambda x: x[1], reverse=True)

get the most prominent color

prominent_color, max_count = sorted_colors[0]

set a threshold based on the average count

th = max(ROI.shape[0] * ROI.shape[1] * 0.0005,

int(np.mean([r_count, y_count, g_count])))

Check for red + yellow combination (British)

if (prominent_color == "Red" or
prominent_color == "Yellow") and
(red_count > th and yellow_count > th):

return "Yellow with Red"

if max_count > th:

return prominent_color

else:
return "Unknown"

The next section of code perform the detection of the traffic
light status, based on the intensity approach used

def traffic_light_pos_BW(ROI):

gray = cv.cvtColor(ROI, cv.COLOR_BGR2GRAY)

split the image into three regions

height, width = gray.shape[:2]

isVertical = height > width

if isVertical:

r_region = gray[0:int(height/3), :]

y_region = gray[int(height/3):int(2*height/3), :]

g_region = gray[int(2*height/3):, :]

else:
r_region = gray[:, 0:int(width/3)]

y_region = gray[:, int(width/3):int(2*width/3)]

g_region = gray[:, int(2*width/3):]

calculate the average pixel intensity

red_intensity = np.mean(red_region)

yellow_intensity = np.mean(yellow_region)

green_intensity = np.mean(green_region)

intensity_val = {

"Red": red_intensity,

"Yellow": yellow_intensity,

"Green": green_intensity

}

if np.std([intensities]) < 15:

return "Unknown"

sorted_intensities = sorted(intensity_val.items(),

key=lambda x: x[1], reverse=True)
prominent_color, max_count = sorted_intensities[0]

th = max(np.mean([intensities])*1.2, 60)

Check for red + yellow combination (British)

if (prominent_color == "Red" or
prominent_color == "Yellow") and
(red_count > th and yellow_count > th):

return "Yellow with Red"

if max_count > threshold:

return prominent_color

else:
return "Unknown"

The next section of code performs the separation of the sky
from the ground as described in II-C.

def separate_image_by_brightness(image):

gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

gray = cv2.GaussianBlur(gray, (9, 9), 2)

height, width = gray.shape

Calcola la luminosità media per ogni riga

row_bright = np.mean(gray, axis=1)

Calcola la somma cumulativa della luminosità

cum_bright = np.cumsum(row_bright)

cum_bright_norm = cum_bright / cum_bright[-1]

Trova la linea di separazione basata

su un punto medio (e.g., 50% cumulativo)

sep_line = np.searchsorted(cum_bright_norm, 0.5)

ceil_zone = image[:sep_line, :]

ground_zone = image[sep_line:, :]

return ceil_zone, ground_zone, sep_line

The next section of code perform the hough transforms.

def detect_circles(image,dp, min_dist,param1,

param2, min_radius,max_radius) -> np.ndarray:

Apply histogram equalization to improve contrast

image = histeq(image)

gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)

Apply GaussianBlur to reduce noise

blurred = cv.GaussianBlur(gray, (9, 9), 2)

Detect circles using HoughCircles

circles = cv.HoughCircles(blurred,

cv.HOUGH_GRADIENT, dp, min_dist,

param1=param1, param2=param2,

minRadius=min_radius, maxRadius=max_radius)

return circles

The following section of code performs the detection of the
speed limit value as described in III-A.

def get_speed_limit(ROI) -> int:

convert the ROI to grayscale

gray = cv.cvtColor(ROI, cv.COLOR_BGR2GRAY)

Apply preprocessing to enhance OCR performance

blur = cv.GaussianBlur(gray, (5, 5), 1)

Use EasyOCR to extract text

reader = easyocr.Reader(['en'], gpu=True)
result = reader.readtext(blur, allowlist='0...9')

Extract numbers from the detected text

for detection in result:

text = detection[1] # The detected text

Search for a number with 1-3 digits

match = re.search(r'\b\d{1,3}\b', text)

if match:

Return the first number found

return int(match.group(0))

The following section of code performs entire detection with
the various methods.

Load the YOLO model

modelCOCO = YOLO("yolo11x.pt")

modelTRAIN = YOLO("best11s50.pt")

Detect object in the image with YOLO

Only class traffic light and stop sign allowed

resultsCOCO = modelCOCO.predict(image,imgsz=

image.shape[:2], classes=[9,11])

resultsTRAIN = modelTRAIN.predict(image)

Detect circles in the image with HoughCircles

circles = detect_circles(

image[separate_ceil(image):, :],

dp, min_dist,param1,param2,

min_radius,max_radius)

cv.line(image, (0, separate_ceil(image)),

(image.shape[1], separate_ceil(image)),

(0, 0, 255), 2)

detectionsCOCO = resultsCOCO[0].

boxes.data.cpu().numpy() # YOLO detection results

for box in detectionsCOCO:

x1, y1, x2, y2, conf, cls = map(int, box)

label = resultsCOCO[0].names[cls]

Traffic light analysis

if label == "traffic light":

region = image[y1:y2, x1:x2]

status = traffic_light_pos_BW(region)

cv.putText(image, status, (x1, y2 + 20),

cv.FONT_HERSHEY_SIMPLEX, 0.5,

(255, 0, 0), 2)

cv.rectangle(image, (x1, y1), (x2, y2),

(0, 255, 0), 2)

cv.putText(image, label, (x1, y1 - 10),

cv.FONT_HERSHEY_SIMPLEX, 0.5,

(0, 255, 0), 2)

Stop signal

else:
cv.rectangle(image, (x1, y1),

(x2, y2), (0, 255, 0), 2)

cv.putText(image, label, (x1, y1 - 10),

cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)

detectionsTRAIN = resultsTRAIN[0].

boxes.data.cpu().numpy()

for box in detectionsTRAIN:

x1, y1, x2, y2, conf, cls = map(int, box)

label = resultsTRAIN[0].names[cls]

cv.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2)

cv.putText(image, label, (x1, y1 + 10),

cv.FONT_HERSHEY_SIMPLEX, 0.5, (255,0, 0), 2)

HoughCircles detected circles

if circles is not None:
Convert the circle parameters to integers

circles = np.uint16(np.around(circles))

for circle in circles[0, :]:

center = (circle[0], circle[1]) # x, y

center = (center[0],

center[1] + separate_ceil(image))

radius = circle[2]

Extract the ROI for speed limit sign

region = image[center[1] - radius -15:

center[1] + radius +15,

center[0] - radius -15: center[0] + radius+15]

Get the speed limit from the ROI with OCR

speed_limit = get_speed_limit(region)

if speed_limit is not None:
cv.putText(image, f"{speed_limit} km/h",

(center[0] - radius, center[1] + radius + 40),

cv.FONT_HERSHEY_SIMPLEX, 1.5, (0, 0, 255), 2)

cv.rectangle(image, (center[0] - radius - 5,

center[1] - radius - 5), (center[0] + radius +5,

center[1] + radius+5), (255, 255, 0), 3)

return image

	Introduction
	Object detection
	YOLO classifier
	Hough transform
	Separation of ceil

	Object classification
	Speed Limit Signs
	Traffic lights classification

	Results
	YOLO models
	Traffic Light Recognizer
	Hough Transform
	Hough vs YOLO

	conclusions
	References
	Appendix A: Python code

